

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Version history

v0.2.5 (17 May 2020)

	ADDED: fixed_rng() local fixture.

	ADDED: benchmark_result() utility function.

v0.2.4 (13 Feb 2020)

	FIXED: bug in reporting for julia [1.3.1, 1.4.0) (an incorrect version check).

v0.2.3 (20 Dec 2019)

	ADDED: color customization options --color-(pass/fail/error/broken/return).

	ADDED: a value - passed to --include-only-tags/--exclude-tags clears all the other values passed to them. Can be used to override the arguments passed from runtest().

	FIXED: help for --include-only-tags/--exclude-tags command-line options is slightly more clear now.

	FIXED: actually support Julia 1.0 and 1.1 now - there was some unsupported syntax used.

	FIXED: updated the method of getting Jute version to prevent test fails on Julia 1.4 nightly.

v0.2.2 (25 Apr 2019)

Switching from Attobot to Registrator.jl.

v0.2.1 (2 Nov 2018)

	ADDED: @critical macro to make test assertions terminate the testcase on failure.

	ADDED: for verbosity=1, display the results returned by @test_result separately.

	ADDED: printing the OS and the kernel info in the report header.

	FIXED: @produce hanging when passed a non-string label.

	FIXED: incorrect indentation with verbosity=1 when a group has some testcases after nested groups.

v0.2.0 (16 Sep 2018)

	CHANGED: support for Julia v0.6 dropped, support for v1.0 added.

	ADDED: command-line arguments (if used) now override the options passed to runtests() during the call.

	FIXED: an incorrect description for the --dont-add-runtests-path option.

	FIXED: include/exclude filtering for testcases is now correctly performed based on full testcase paths.

v0.1.0 (1 Oct 2017)

	CHANGED: testcase groups are no longer defined by modules; @testgroup should be used instead. Consequently, the option :test_module_prefix was removed.

	CHANGED: testcases must be defined via the @testgroup macro instead of the testcase() function.

	CHANGED: similarly, fixtures are defined with @global_fixture and @local_fixture macros. fixture() and local_fixture() are no longer exported.

	CHANGED: not exporting rowmajor_product(), pprint_time(), with_output_capture() and build_run_options() anymore, since they are only used in self-tests.

	CHANGED: global fixtures now produce single values instead of whole lists, same as the local ones.

	ADDED: @testcase and @testgroup macros.

	ADDED: @global_fixture and @local_fixture macros.

	ADDED: progress reporting is now more suitable for long group and testcase names.

	ADDED: @test_fail macro for providing a custom description to a fail.

	ADDED: re-exporting Base.Test’s @inferred, @test_warn and @test_nowarn.

	ADDED: testcases can now be defined directly before the call to runtests() instead of in specially named files.

	FIXED: output capture problems in Julia 0.6 on Windows.

v0.0.3 (13 Aug 2017)

	CHANGED: the abstract type TestcaseReturn was removed, @test_result can return any value now.

	CHANGED: delayed_teardown option of fixture() was changed to instant_teardown (false by default), since delayed teardown is the most common behavior.

	ADDED: documentation

	ADDED: displaying the testcase tag before proceeding to run it; looks a bit better for long-running testcases

	ADDED: testcase tagging (see tag()) and filtering by tags.

	ADDED: --max-fails command-line option to stop test run after a certain number of failures.

	ADDED: showing the version info for Julia and Jute before the test run.

	ADDED: --capture-output command-line option to capture all the output from testcases and only show the output from the failed ones in the end.

	ADDED: runtests() now takes an options keyword that allows one to supply run options programmatically instead of through the command line.

	ADDED: exporting with_output_capture() function (mostly to use in tests).

	FIXED: incorrect handling of the case when all tests are filtered out.

	FIXED: incorrect pretty printing of times smaller than 1 microsecond.

Internals:

	Removed the unused dependency on IterTools

v0.0.2 (27 Jul 2017)

	FIXED: time rounding logic

	FIXED: multiple performance improvements (both for test pick-up and execution)

Internals:

	ADDED: some performance tests

	FIXED: deprecated syntax in rowmajor_product.jl

	FIXED: extending an external function on external types

v0.0.1 (23 Jul 2017)

Initial version.

Jute, a Py.Test-inspired testing framework

The main principles of the library:

	The test runner include()s all the files named in a certain way (ending in .test.jl by default). Alternatively, the files containing testcase definitions can be included manually;

	Testcases are defined using the [@testcase](@ref Jute.@testcase) macro and grouped using the [@testgroup](@ref Jute.@testgroup) macro;

	Testcases can be parametrized by fixtures, which can be simple iterables, or include a setup/teardown stage right before and after each test, or once before and after all the tests that use it.

	Fixtures can be parametrized by other fixtures.

A quick example

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

using Jute

constant fixture - any iterable
fx1 = 1:3

global fixture - the setup/teardown function is run once
for every produced value
fx2 = @global_fixture for x in fx1
 # the optional second argument defines a custom label for the value
 @produce x "value $x"
end

local fixture - the setup/teardown function is run for each testcase
and each value produced by `fx2`
fx3 = @local_fixture for x in fx2
 @produce (x + 1)
end

testcase - will be picked up automatically
and run for all the combinations of fixture values
@testcase "tc" for x in fx1, y in fx2, z in fx3
 @test x + y == y + x
 @test x + y + z == z + y + x
end

runtests()

output

Collecting testcases...
Using 1 out of 1 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
..
--
54 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

Internals

Some non-exported entities.

Jute.Testcase
Jute.GlobalFixture
Jute.LocalFixture

Manual

Defining tests

The entry-point file (commonly called runtests.jl) is:

using Jute

Testcase definitions

exit(runtests())

If there were no [@testcase](@ref Jute.@testcase) and [@testgroup](@ref Jute.@testgroup) calls before the call to [runtests()](@ref Jute.runtests), the test runner picks up any file with the name ending in .test.jl (by default; can be changed with the command-line option --test-file-postfix) in the directory where the entry-point file is located, or in any subdirectories.
All those files are included at the same level (with using Jute at the start), and all the [@testcase](@ref Jute.@testcase) and [@testgroup](@ref Jute.@testgroup) definitions are picked up.

If some testcase definitions were present before the call to [runtests()](@ref Jute.runtests), they will be used and consumed, so the following calls to [runtests()](@ref Jute.runtests) will follow the first scenario (loading testcases from files).

The [@testgroup](@ref Jute.@testgroup) definitions can contain other [@testgroup](@ref Jute.@testgroup) definitions and [@testcase](@ref Jute.@testcase) definitions.

The exit() call is required to signal about any test failures to the processes that initiate the execution of the test suite, for instance, CI tools.
[runtests()](@ref Jute.runtests) returns 1 if there were failed tests, 0 otherwise.

!!! note

In all the following examples the `exit()` call will be missing because of the limitations of the `Documenter`'s doctest runner.
Also, `using Jute` will be implied.

Basic testcases and groups

In the simple case of a non-parametrized test, the [@testcase](@ref Jute.@testcase) macro takes the testcase name and body.
Testcases can be grouped using [@testgroup](@ref Jute.@testgroup) definitions.
For example:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

@testcase "tc1" begin
end

@testgroup "group" begin
 @testcase "tc2" begin
 end
end

@testgroup "group2" begin
 @testgroup "subgroup" begin
 @testcase "tc3" begin
 end
 end
end

runtests(; options=Dict(:verbosity => 2))

output

Collecting testcases...
Using 3 out of 3 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
tc1 ([...] ms) [PASS]
group/
 tc2 ([...] ms) [PASS]
group2/
 subgroup/
 tc3 ([...] ms) [PASS]
--
3 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

The order of testcase definition is preserved.
In other words, the testcases will be executed in the same order in which they were defined.

Assertions

Jute relies on the assertions from Test [https://docs.julialang.org/en/latest/stdlib/Test/]; [@test](@ref Jute.@test), [@test_throws](@ref Jute.@test_throws), [@test_skip](@ref Jute.@test_skip), [@test_broken](@ref Jute.@test_broken), [@inferred](@ref Jute.@inferred), [@test_warn](@ref Jute.@test_warn) and [@test_nowarn](@ref Jute.@test_nowarn) can be used.
In addition, Jute has a [@test_result](@ref Jute.@test_result) macro allowing one to return a custom result (e.g. the value of a benchmark from a testcase), and a [@test_fail](@ref Jute.@test_fail) macro for providing custom information with a fail.
There can be several assertions per testcase; their results will be reported separately.
If the testcase does not call any assertions and does not throw any exceptions, it is considered to be passed.

Parametrizing testcases

Constant fixtures

The simplest method to parametrize a test is to supply it with an iterable:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

@testcase "parametrized testcase" for x in [1, 2, 3]
 @test x == x
end

runtests(; options=Dict(:verbosity => 2))

output

Collecting testcases...
Using 1 out of 1 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
parametrized testcase [1] ([...] ms) [PASS]
parametrized testcase [2] ([...] ms) [PASS]
parametrized testcase [3] ([...] ms) [PASS]
--
3 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

By default, Jute uses string() to convert a fixture value to a string for reporting purposes.
One can assign custom labels to fixtures by passing a Pair of iterables instead:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

@testcase "parametrized testcase" for x in ([1, 2, 3] => ["one", "two", "three"])
 @test x == x
end

runtests(; options=Dict(:verbosity => 2))

output

Collecting testcases...
Using 1 out of 1 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
parametrized testcase [one] ([...] ms) [PASS]
parametrized testcase [two] ([...] ms) [PASS]
parametrized testcase [three] ([...] ms) [PASS]
--
3 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

A testcase can use several fixtures, in which case Jute will run the testcase function with all possible combinations of them:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

@testcase "parametrized testcase" for x in [1, 2], y in [3, 4]
 @test x + y == y + x
end

runtests(; options=Dict(:verbosity => 2))

output

Collecting testcases...
Using 1 out of 1 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
parametrized testcase [1,3] ([...] ms) [PASS]
parametrized testcase [1,4] ([...] ms) [PASS]
parametrized testcase [2,3] ([...] ms) [PASS]
parametrized testcase [2,4] ([...] ms) [PASS]
--
4 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

Iterable unpacking is also supported:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

@testcase "parametrized testcase" for (x, y) in [(1, 2), (3, 4)]
 @test x + y == y + x
end

runtests(; options=Dict(:verbosity => 2))

output

Collecting testcases...
Using 1 out of 1 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
parametrized testcase [(1, 2)] ([...] ms) [PASS]
parametrized testcase [(3, 4)] ([...] ms) [PASS]
--
2 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

Note that the label still refers to the full element of the iterable.

!!! note

If the iterable expression evaluates to anything other than a fixture object, it will be treated as a constant fixture.
In other words, if an expression like `for (x, y) in [fixture1, fixture2, fixture3]` is used to parametrize a testcase or a fixture, the nested fixtures will not be processed and added to the dependencies.

Global fixtures

A global fixture is a more sophisticated variant of a constant fixture that has a setup and a teardown stage.
For each value produced by the global fixture, the setup is called before the first testcase that uses it.
As for the teardown, it is either called right away (if the option instant_teardown is true) or after the last testcase that uses it (if instant_teardown is false, which is the default).
If no testcases use it (for example, they were filtered out), neither setup nor teardown will be called.

The setup and the teardown are defined by use of a single coroutine that produces the fixture value.
The coroutine’s first argument is a function that is used to return the value.
If instant_teardown is false, the call blocks until it is time to execute the teardown:

db_connection = @global_fixture begin
 c = db_connect()

 # this call blocks until all the testcases
 # that use this value are executed
 @produce c

 close(c)
end

Similarly to the constant fixture case, one can provide a custom identifier for the fixture via the optional second argument of [@produce](@ref Jute.@produce):

db_connection = @global_fixture begin
 c = db_connect()

 @produce c "db_connection"

 close(c)
end

Global fixtures can be parametrized by other constant or global fixtures.
Similarly to the test parametrization, all possible combinations of parameters will be used to produce values:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

fx1 = @global_fixture for x in 3:4
 @produce x
end

fx2 = @global_fixture for x in 1:2, y in fx1
 @produce (x, y)
end

@testcase "tc" for x in fx2
 @test length(x) == 2
end

runtests(; options=Dict(:verbosity => 2))

output

Collecting testcases...
Using 1 out of 1 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
tc [(1, 3)] ([...] ms) [PASS]
tc [(1, 4)] ([...] ms) [PASS]
tc [(2, 3)] ([...] ms) [PASS]
tc [(2, 4)] ([...] ms) [PASS]
--
4 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

Local fixtures

A local fixture is a fixture whose value is created right before each call to the testcase function and destroyed afterwards.
A simple example is a fixture that provides a temporary directory:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

temporary_dir = @local_fixture begin
 dir = mktempdir()
 @produce dir "tempdir" # this call will block while the testcase is being executed
 rm(dir, recursive=true)
end

@testcase "tempdir test" for dir in temporary_dir
 @test isdir(dir)
end

runtests(; options=Dict(:verbosity => 2))

output

Collecting testcases...
Using 1 out of 1 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
tempdir test [tempdir] ([...] ms) [PASS]
--
1 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

Local fixtures can be parametrized by any other type of fixture, including other local fixtures.

Testcase tags

Testcases can be assigned tags of the type Symbol.
This can be used to establish a secondary grouping, independent of the primary grouping provided by modules.
For example, one can tag performance tests, tests that run for a long time, unit/integration tests, tests that require a specific resource and so on.
Testcases can be filtered by tags they have or don’t have using [command-line arguments](@ref run_options_manual).

The tagging is performed by the optional parameter tag to the macro [@testcase](@ref Jute.@testcase) that takes a list of Symbols:

DocTestSetup = quote
 using Jute
 Jute.jute_doctest()
end

@testcase tags=[:foo] "foo" begin
end

@testcase tags=[:bar, :baz] "bar and baz" begin
end

runtests(; options=Dict(:verbosity => 2, :include_only_tags => [:baz]))

output

Collecting testcases...
Using 1 out of 2 testcase definitions...
==
Platform: [...], Julia [...], Jute [...]
--
bar and baz ([...] ms) [PASS]
--
1 tests passed, 0 failed, 0 errored in [...] s (total test time [...] s)

[Run options](@id run_options_manual)

Jute’s [runtest()](@ref Jute.runtests) picks up the options from the command line by default.
Alternatively, they can be set with the options keyword argument of [runtests()](@ref Jute.runtests).
Note that command-line arguments override the ones passed via options.

Jute.build_parser

Run options can be accessed from a testcase or a fixture via the built-in fixture [run_options](@ref Jute.run_options).

Public API

Entry point

runtests

Testcases and fixtures

@testcase
@testgroup
@global_fixture
@local_fixture
@produce

Assertions

The following assertions are re-exported from Test [https://docs.julialang.org/en/latest/stdlib/Test/] and can be used inside Jute testcases.

@test
@test_throws
@test_broken
@test_skip
@inferred
@test_warn
@test_nowarn

Jute adds several assertions of its own.

@test_result
@test_fail

Assertions can be made to terminate the testcase on failure.

@critical

Built-in fixtures

temporary_dir
run_options
fixed_rng

Utilities

benchmark_result

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

